Modeling the dynamic regulation of nitrogen fixation in the cyanobacterium Trichodesmium sp.

نویسندگان

  • Sophie Rabouille
  • Marc Staal
  • Lucas J Stal
  • Karline Soetaert
چکیده

A physiological, unbalanced model is presented that explicitly describes growth of the marine cyanobacterium Trichodesmium sp. at the expense of N(2) (diazotrophy). The model involves the dynamics of intracellular reserves of carbon and nitrogen and allows the uncoupling of the metabolism of these elements. The results show the transient dynamics of N(2) fixation when combined nitrogen (NO(3)(-), NH(4)(+)) is available and the increased rate of N(2) fixation when combined nitrogen is insufficient to cover the demand. The daily N(2) fixation pattern that emerges from the model agrees with measurements of rates of nitrogenase activity in laboratory cultures of Trichodesmium sp. Model simulations explored the influence of irradiance levels and the length of the light period on fixation activity and cellular carbon and nitrogen stoichiometry. Changes in the cellular C/N ratio resulted from allocations of carbon to different cell compartments as demanded by the growth of the organism. The model shows that carbon availability is a simple and efficient mechanism to regulate the balance of carbon and nitrogen fixed (C/N ratio) in filaments of cells. The lowest C/N ratios were obtained when the light regime closely matched nitrogenase dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Circadian rhythm of nitrogenase gene expression in the diazotrophic filamentous nonheterocystous cyanobacterium Trichodesmium sp. strain IMS 101.

Recent studies suggested that the daily cycle of nitrogen fixation activity in the marine filamentous nonheterocystous cyanobacterium Trichodesmium sp. is controlled by a circadian rhythm. In this study, we evaluated the rhythm of nitrogen fixation in Trichodesmium sp. strain IMS 101 by using the three criteria for an endogenous rhythm. Nitrogenase transcript abundance oscillated with a period ...

متن کامل

Arrangement of nitrogenase structural genes in an aerobic filamentous nonheterocystous cyanobacterium.

Members of the marine filamentous, nonheterocystous cyanobacterial genus Trichodesmium not only are capable of fixing nitrogen aerobically in the light but when grown under a light-dark cycle will fix nitrogen only during the light phase. In this study, we constructed a restriction map of the structural nitrogen fixation genes (nifHDK) in Trichodesmium sp. strain NIBB 1067. We found that the or...

متن کامل

Release of Dissolved Organic Nitrogen by Marine Diazotrophic Cyanobacteria, Trichodesmium spp.

Trichodesmium sp. is a filamentous, colonial cyanobacterium which contributes substantially to the input of nitrogen in tropical and subtropical oceanic waters through nitrogen fixation (N(2) fixation). We applied a N tracer technique to assess the rate of release of dissolved organic nitrogen (DON) from this cyanobacterium and compared those rates with rates of N(2) fixation determined for the...

متن کامل

Influence of elevated CO2 concentrations on cell division and nitrogen fixation rates in the bloom-forming cyanobacterium Nodularia spumigena

The surface ocean absorbs large quantities of the CO2 emitted to the atmosphere from human activities. As this CO2 dissolves in seawater, it reacts to form carbonic acid. While this phenomenon, called ocean acidification, has been found to adversely affect many calcifying organisms, some photosynthetic organisms appear to benefit from increasing [CO2]. Among these is the cyanobacterium Trichode...

متن کامل

Reversible coupling of individual phycobiliprotein isoforms during state transitions in the cyanobacterium Trichodesmium analysed by single-cell fluorescence kinetic measurements.

In the non-heterocyst, marine cyanobacterium Trichodesmium nitrogen fixation is confined to the photoperiod and occurs coevally with oxygenic photosynthesis although nitrogenase is irreversibly inactivated by oxygen. In previous studies it was found that regulation of photosynthesis for nitrogen fixation involves Mehler reaction and various activity states with reversible coupling of photosynth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 72 5  شماره 

صفحات  -

تاریخ انتشار 2006